Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Xenotransplantation ; 31(2): exen12855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602029

RESUMO

Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.


Assuntos
Sialiltransferases , Transplante Heterólogo , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Humanos , Antígenos Virais de Tumores , Carboidratos , Mamíferos/metabolismo , Sialiltransferases/genética , Sialiltransferases/química , Sialiltransferases/metabolismo , Suínos
2.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103644

RESUMO

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Assuntos
Mutação , Sialiltransferases , Humanos , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Simulação por Computador , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Mutação Puntual , Conformação Proteica em Folha beta , Transporte Proteico , Algoritmo Florestas Aleatórias , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/genética , Sialiltransferases/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 953165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157440

RESUMO

Sialylation is a dynamically regulated modification, which commonly occurs at the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic cells. Sialylation plays a key role in a wide array of biological processes through the regulation of protein-protein interactions, intracellular localization, vesicular trafficking, and signal transduction. A majority of the proteins involved in lipoprotein metabolism and atherogenesis, such as apolipoproteins and lipoprotein receptors, are sialylated in their glycan structures. Earlier studies in humans and in preclinical models found a positive correlation between low sialylation of lipoproteins and atherosclerosis. More recent works using loss- and gain-of-function approaches in mice have revealed molecular and cellular mechanisms by which protein sialylation modulates causally the process of atherosclerosis. The purpose of this concise review is to summarize these findings in mouse models and to provide mechanistic insights into lipoprotein sialylation and atherosclerosis.


Assuntos
Aterosclerose , Receptores de Lipoproteínas , Animais , Apolipoproteínas , Aterosclerose/metabolismo , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Lipoproteínas , Camundongos , Polissacarídeos , Sialiltransferases/química , Sialiltransferases/metabolismo
4.
Bioconjug Chem ; 33(5): 781-787, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35437982

RESUMO

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ; however, use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here, we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves the chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAzylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


Assuntos
Diazometano , Ácido N-Acetilneuramínico , Diazometano/química , Glicoproteínas/química , Ácido N-Acetilneuramínico/química , Polissacarídeos/química , Ácidos Siálicos/química , Sialiltransferases/química
5.
Exp Cell Res ; 410(1): 112949, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843714

RESUMO

Glioma stem/initiating cells have been considered a major cause of tumor recurrence and therapeutic resistance. In this study, we have established a new glioma stem-like cell (GSC), named U373-GSC, from the U373 glioma cell line. The cells exhibited stemness properties, e.g., expression of stem cell markers, self-renewal activity, multi-lineage differentiating abilities, and drug resistance. Using U373-GSC and GSC-03A-a GSC clone previously established from patient tissue, we have identified a novel GSC-associated sialic acid-modified glycan commonly expressed in both cell lines. Lectin fluorescence staining showed that Maackia amurensis lectin II (MAL-II)-binding alpha2,3-sialylated glycan (MAL-SG) was highly expressed in GSCs, and drastically decreased during FBS induced differentiation to glioma cells or little in the parental cells. Treatment of GSCs by MAL-II, compared with other lectins, showed that MAL-II significantly suppresses cell viability and sphere formation via induction of cell cycle arrest and apoptosis of the GSCs. Similar effects were observed when the cells were treated with a sialyltransferase inhibitor or sialidase. Taken together, we demonstrate for the first time that MAL-SGs/alpha-2,3 sialylations are upregulated and control survival/maintenances of GSCs, and their functional inhibitions lead to apoptosis of GSCs. MAL-SG could be a potential marker and therapeutic target of GSCs; its inhibitors, such as MAL-II, may be useful for glioma treatment in the future.


Assuntos
Glioma/tratamento farmacológico , Lectinas/farmacologia , Maackia/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Lectinas/química , Polissacarídeos/antagonistas & inibidores , Polissacarídeos/química , Sialiltransferases/química
6.
Int J Biol Macromol ; 194: 366-376, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813786

RESUMO

An invertebrate sialyltransferase, cST3Gal-I, identified from the sea squirt Ciona savignyi, was functionally characterized in vitro using recombinant enzyme expressed in yeast strains. cST3Gal-I was localized to the Golgi membrane when expressed in Saccharomyces cerevisiae. Enzymatic characterization for substrate specificity and kinetic property indicate that cST3Gal-I prefers O-glycans, rather than N-glycan, of asialoglycoproteins as substrates. Interestingly, C. savignyi sialyltransferase exhibited effectively Neu5Ac transfer to core 1 O-glycan, Gal ß(1,3)GalNAc, compared to orthologous human glycosyltransferase. Further, it is shown that cST3Gal-I catalyzes the formation of α(2,3)-linkage, through lectin blot analysis with Maackia amurensis lectin and by linkage-specific sialidase treatments. The putative active sites of cST3Gal-I for putative acid/base catalysts and sialic acid acceptor/donor substrate bindings were also identical to the counterpart residues of a mammalian enzyme, porcine ST3Gal-I, as predicted through homologous structure modeling. These results could imply that an ancestral tunicate ST3Gal-I in C. savignyi would prefer O-glycan onto glycoproteins as its sialic acid acceptor than vertebrate enzymes.


Assuntos
Organismos Aquáticos/enzimologia , Ciona/enzimologia , Invertebrados , Polissacarídeos/química , Sialiltransferases/química , Sialiltransferases/genética , Animais , Clonagem Molecular , Ativação Enzimática , Expressão Gênica , Ligação Genética , Glicosilação , Filogenia , Proteínas Recombinantes , Relação Estrutura-Atividade
7.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641494

RESUMO

Glycans have been shown to play a key role in many biological processes, such as signal transduction, immunogenicity, and disease progression. Among the various glycosylation modifications found on cell surfaces and in biomolecules, sialylation is especially important, because sialic acids are typically found at the terminus of glycans and have unique negatively charged moieties associated with cellular and molecular interactions. Sialic acids are also crucial for glycosylated biopharmaceutics, where they promote stability and activity. In this regard, heterogenous sialylation may produce variability in efficacy and limit therapeutic applications. Homogenous sialylation may be achieved through cellular and molecular engineering, both of which have gained traction in recent years. In this paper, we describe the engineering of intracellular glycosylation pathways through targeted disruption and the introduction of carbohydrate active enzyme genes. The focus of this review is on sialic acid-related genes and efforts to achieve homogenous, humanlike sialylation in model hosts. We also discuss the molecular engineering of sialyltransferases and their application in chemoenzymatic sialylation and sialic acid visualization on cell surfaces. The integration of these complementary engineering strategies will be useful for glycoscience to explore the biological significance of sialic acids on cell surfaces as well as the future development of advanced biopharmaceuticals.


Assuntos
Polissacarídeos/química , Ácidos Siálicos/química , Sialiltransferases/química , Animais , Glicosilação , Humanos , Sialiltransferases/metabolismo
8.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500643

RESUMO

Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.


Assuntos
Fucosiltransferases/química , Fucosiltransferases/metabolismo , Mamíferos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Animais , Catálise , Domínio Catalítico/fisiologia , Glicosilação , Humanos
9.
Eur J Med Genet ; 64(8): 104250, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022416

RESUMO

ST3GAL3 deficiency is an extremely rare autosomal recessive disorder caused by pathogenic mutations in the ST3GAL3 gene. Epilepsy, motor development delay, severe intellectual disability, and behavioral disorders have been reported to be associated with ST3GAL3 deficiency. In the present study, ST3GAL3 deficiency was caused by a homozygous splice-site mutation (NM_174964.4: c.936+1delG) in ST3GAL3. The patient described in this study was clinically similar to previously reported cases; nevertheless, we were able to detect repetitive behavior, previously not reported manifestations.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Fenótipo , Sialiltransferases/genética , Criança , Epilepsia/patologia , Homozigoto , Humanos , Deficiência Intelectual/patologia , Masculino , Movimento , Mutação , Sítios de Splice de RNA , Sialiltransferases/química , Comportamento Estereotipado , Síndrome
10.
Carbohydr Res ; 500: 108249, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33545445

RESUMO

Glycans on proteins and cell surfaces are useful biomarkers for determining functional interactions with glycan binding proteins, potential disease states, or indeed level of differentiation. The ability to rapidly and sensitively detect or tag specific glycans on proteins provides a diagnostic tool with wide application in chemical glycobiology. The monosaccharide N-acetylneuraminic acid (sialic acid) is a key player in these interactions and the manipulation and control of sialylation levels has been an important research focus, particularly in the development of therapeutic proteins. Using sialyltransferases to tag specific glycans provides a rapid means of determining what types of glycans are present. We have synthesized two variants of sialic acid carrying the fluorophore BODIPY (4,4 -Difluoro-4-boro-3a,4a-diaza-s-indacene) and examined its use with several different sialyltransferases on a variety of protein substrates and cell surface glycans. Our data show that there are significant differences between various enzymes ability to transfer the labelled sialic acids, and that the type of N-glycan and target protein strongly influences this activity.


Assuntos
Compostos de Boro/química , Desenvolvimento de Medicamentos , Galactose/análise , Polissacarídeos/química , Ácidos Siálicos/química , Estrutura Molecular , Sialiltransferases/química , Sialiltransferases/metabolismo , Especificidade por Substrato
11.
J Struct Biol ; 212(2): 107628, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971290

RESUMO

Sialic acid residues found as terminal monosaccharides in various types of glycan chains in cell surface glycoproteins and glycolipids have been identified as important contributors of cell-cell interactions in normal vs. abnormal cellular behavior and are pivotal in diseases such as cancers. In vertebrates, sialic acids are attached to glycan chains by a conserved subset of sialyltransferases with different enzymatic and substrate specificities. ST6Gal I is a sialyltransferase using activated CMP-sialic acids as donor substrates to catalyze the formation of a α2,6-glycosidic bond between the sialic acid residue and the acceptor disaccharide LacNAc. Understanding sialyltransferases at the molecular and structural level shed light into their function. We present here two human ST6Gal I structures, which show for the first time the enzyme in the unliganded state and with the full donor substrate CMP-Neu5Ac bound. Comparison of these structures reveal flexibility of the catalytic loop, since in the unliganded structure Tyr354 adopts a conformation seen also as an alternate conformation in the substrate bound structure. CMP-Neu5Ac is bound with the side chain at C5 of the sugar residue directed outwards at the surface of the protein. Furthermore, the exact binding mode of the sialic acid moiety of the substrate directly involves sialylmotifs L, S and III and positions the sialylmotif VS in the immediate vicinity. We also present a model for the ternary complex of ST6Gal I with both the donor and the acceptor substrates.


Assuntos
Antígenos CD/química , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/química , Ácidos Siálicos/química , Sialiltransferases/química , Animais , Humanos , Monossacarídeos/química , Polissacarídeos/química , Especificidade por Substrato/fisiologia , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
12.
Analyst ; 145(13): 4512-4521, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412559

RESUMO

The polysialyltransferases (polySTs) catalyse the polymerisation of polysialic acid, which plays an important role in tumour metastasis. While assays are available to assess polyST enzyme activity, there is no methodology available specifically optimised for identification and quantitative evaluation of potential polyST inhibitors. The development of an HPLC-fluorescence-based enzyme assay described within includes a comprehensive investigation of assay conditions, including evaluation of metal ion composition, enzyme, substrate and acceptor concentrations, temperature, pH, and tolerance to DMSO, followed by validation using known polyST inhibitors. Thorough analysis of each of the assay components provided a set of optimised conditions. Under these optimised conditions, the experimentally observed Ki value for CMP, a competitive polyST inhibitor, was strongly correlated with the predicted Ki value, based on the classical Cheng-Prusoff equation [average fold error (AFE) = 1.043]. These results indicate that this assay can provide medium-throughput analysis for enzyme inhibitors with high accuracy, through determining the corresponding IC50 values with substrate concentration at the KM, without the need to perform extensive kinetic studies for each compound. In conclusion, an in vitro cell-free assay for accurate assessment of polyST inhibition is described. The utility of the assay for routine identification of potential polyST inhibitors is demonstrated, allowing quantitative measurement of inhibition to be achieved, and exemplified through assessment of full competitive inhibition. Given the considerable and growing interest in the polySTs as important anti-metastatic targets in cancer drug discovery, this is a vital tool to enable preclinical identification and evaluation of novel polyST inhibitors.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/análise , Sialiltransferases/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Cinética , Quinoxalinas/síntese química , Quinoxalinas/química , Sialiltransferases/química , Trissacarídeos/síntese química , Trissacarídeos/química
13.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111064

RESUMO

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Imageamento por Ressonância Magnética/métodos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerização , Conformação Proteica , Domínios Proteicos
14.
Z Naturforsch C J Biosci ; 75(1-2): 41-49, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32031984

RESUMO

The overexpression of sialic acids and sialyltransferases (STs) during malignant transformation and progression could result in the aberrant sialylation of cancer cells. Therefore, interfering the sialic acid synthesis might be an effective pathway in cancer therapy. In this study, we assessed that the antitumor inhibitors of 20(S)-ginsenosides Rg3, 20(R)-ginsenosides Rg3, 20(S)-ginsenosides Rh2, and 20(R)-ginsenosides Rh2 could block the sialoglycans in liver cancer cells HepG2. The results showed that these four compounds could inhibit the expressions of the total and free sialic acid at different levels in HepG2, respectively; also, it showed dose dependence. In addition, the results of the enzyme-linked immunosorbent assay showed that the above four compounds can inhibit the expression of STs significantly. We also found that these compounds could mediate the block of sialylation of α2,3- and α2,6-linked sialic acids in HepG2 cells by flow cytometry. Meanwhile, the results of the molecular docking investigation showed that these compounds showed strong interaction with ST6GalI and ST3GalI. These results verified that the ginsenosides have a powerful inhibiting aberrant sialylation, and it laid a theoretical foundation for further research on the investigation of ginsenosides as the target inhibitors on STs.


Assuntos
Ginsenosídeos/farmacologia , Ácidos Siálicos/química , Sialiltransferases/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Sialiltransferases/química
15.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947579

RESUMO

We identified and analyzed α2,8-sialyltransferases sequences among 71 ray-finned fish species to provide the first comprehensive view of the Teleost ST8Sia repertoire. This repertoire expanded over the course of Vertebrate evolution and was primarily shaped by the whole genome events R1 and R2, but not by the Teleost-specific R3. We showed that duplicated st8sia genes like st8sia7, st8sia8, and st8sia9 have disappeared from Tetrapods, whereas their orthologues were maintained in Teleosts. Furthermore, several fish species specific genome duplications account for the presence of multiple poly-α2,8-sialyltransferases in the Salmonidae (ST8Sia II-r1 and ST8Sia II-r2) and in Cyprinus carpio (ST8Sia IV-r1 and ST8Sia IV-r2). Paralogy and synteny analyses provided more relevant and solid information that enabled us to reconstruct the evolutionary history of st8sia genes in fish genomes. Our data also indicated that, while the mammalian ST8Sia family is comprised of six subfamilies forming di-, oligo-, or polymers of α2,8-linked sialic acids, the fish ST8Sia family, amounting to a total of 10 genes in fish, appears to be much more diverse and shows a patchy distribution among fish species. A focus on Salmonidae showed that (i) the two copies of st8sia2 genes have overall contrasted tissue-specific expressions, with noticeable changes when compared with human co-orthologue, and that (ii) st8sia4 is weakly expressed. Multiple sequence alignments enabled us to detect changes in the conserved polysialyltransferase domain (PSTD) of the fish sequences that could account for variable enzymatic activities. These data provide the bases for further functional studies using recombinant enzymes.


Assuntos
Sialiltransferases/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Evolução Molecular , Peixes/genética , Peixes/metabolismo , Expressão Gênica , Loci Gênicos , Modelos Moleculares , Família Multigênica , Filogenia , Conformação Proteica , Sialiltransferases/química , Sialiltransferases/metabolismo , Relação Estrutura-Atividade , Vertebrados/metabolismo
16.
Sci Rep ; 9(1): 17993, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784620

RESUMO

Overexpression of hST3Gal1 leads to hypersialylation of cell-surface glycoconjugates, a cancer-associated condition that promotes cell growth, migration and invasion. Upregulation of this enzyme in ovarian cancer is linked to cancer progression and metastasis, contributing also to chemotherapy resistance. Strategies for preventing metastasis include the inhibition of hST3Gal1, which demands structure-based studies on its strict regioselectivity and substrate/donor preference. Herein we describe the contribution of various residues constituting donor CMP-Neu5Ac and acceptor Galß1-3GalNAc-R binding sites to catalysis. Removal of hydrogen bonds and/or stacking interactions among substrates and residues Y191, Y230, N147, S148 and N170 affected the enzyme's activity to a different extent, revealing the fine control needed for an optimal catalytic performance. To gain further understanding of the correlation among structure, activity and stability, the in vitro role of hST3Gal1 disulphide bonds was analysed. As expected, disruption of the Glycosyltransferase family 29 (GT29) invariant bond C142-C281, as well as the ST3Gal1 subfamily conserved disulphide C61-C139 inactivates the enzyme. While disulphide C59-C64 is not essential for function, its absence reduces the activity (kcat) for donor and acceptor substrates to about 67 and 72%, respectively, and diminishes the enzyme's melting temperature (Tm) by 7 °C.


Assuntos
Dissulfetos/química , Sialiltransferases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Sequência Conservada , Humanos , Ligação de Hidrogênio , Estrutura Molecular , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sialiltransferases/química , Sialiltransferases/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato , beta-Galactosídeo alfa-2,3-Sialiltransferase
17.
Carbohydr Res ; 486: 107823, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557542

RESUMO

Sialyltransferases (STs) are the fundamental enzymes which are related to many biological processes such as cell signalling, cellular recognition, cell-cell and host-pathogen interactions and metastasis of cancer. All STs catalyse the terminal sialic acid addition from CMP donor to the glycan units. ST3GAL family is one of the most important STs and divided into the six subfamily in mouse and humans which are ST3Gal I, ST3Gal II, ST3Gal III, ST3Gal IV, ST3Gal V, and ST3Gal VI. The members of the ST3GAL family transfer sialic acid to the terminal galactose residues of glycochains through an α2,3-linkage. There are many reports on the ST3GAL function in mammals but, there is a paucity of information about structure of human ST3GAL family. Herein, we investigated the structure, glycosylation and CMP binding site of human ST3GAL family using computational methods. We found for the first time N-glycosylation positions in ST3Gal IV and VI, mucin type glycosylation in ST3Gal III and O-GlcNAcylation in ST3Gal V and their relation with sialylmotifs. In addition, we predicted CMP binding positions of human ST3GAL enzyme family on three-dimensional structure using molecular docking and first demonstrated the sialylmotifs relation with the CMP binding positions in ST3Gal III-VI subfamilies.


Assuntos
Monofosfato de Citidina/metabolismo , Simulação de Acoplamento Molecular , Sialiltransferases/química , Sialiltransferases/metabolismo , Glicosilação , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , beta-Galactosídeo alfa-2,3-Sialiltransferase
18.
J Biol Chem ; 294(39): 14383-14393, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395657

RESUMO

ß-1,4-Galactosyltransferase 1 (B4GALT1) and ST6 ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) catalyze the successive addition of terminal ß-1,4-linked galactose and α-2,6-linked sialic acid to N-glycans. Their exclusive interaction in the Golgi compartment is a prerequisite for their full catalytic activity, whereas a lack of this interaction is associated with cancers and hypoxia. To date, no structural information exists that shows how glycosyltransferases functionally assemble with each other. Using molecular docking simulations to predict interaction surfaces, along with mutagenesis screens and high-throughput FRET analyses in live cells to validate these predictions, we show here that B4GALT1 and ST6GAL1 interact via highly charged noncatalytic surfaces, leaving the active sites exposed and accessible for donor and acceptor substrate binding. Moreover, we found that the assembly of ST6GAL1 homomers in the endoplasmic reticulum before ST6GAL1 activation in the Golgi utilizes the same noncatalytic surface, whereas B4GALT1 uses its active-site surface for assembly, which silences its catalytic activity. Last, we show that the homomeric and heteromeric B4GALT1/ST6GAL1 complexes can assemble laterally in the Golgi membranes without forming cross-cisternal contacts between enzyme molecules residing in the opposite membranes of each Golgi cisterna. Our results provide detailed mechanistic insights into the regulation of glycosyltransferase interactions, the transitions between B4GALT1 and ST6GAL1 homo- and heteromers in the Golgi, and cooperative B4GALT1/ST6GAL1 function in N-glycan synthesis.


Assuntos
Antígenos CD/química , Galactosiltransferases/química , Simulação de Acoplamento Molecular , Multimerização Proteica , Sialiltransferases/química , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Galactosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Sialiltransferases/metabolismo , Eletricidade Estática
19.
Glycobiology ; 29(11): 750-754, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361010

RESUMO

Glycosylation is a common modification found on numerous proteins and lipids. However, direct detection of glycans on these intact biomolecules has been challenge. Here, utilizing enzymatic incorporation of fluorophore-conjugated sialic acids, dubbed as direct fluorescent glycan labeling, we report the labeling and detection of N- and O-glycans on glycoproteins. The method allows detection of specific glycans without the laborious gel blotting and chemiluminescence reactions used in Western blotting. The method can also be used with a variety of fluorescent dyes.


Assuntos
Fluorescência , Polissacarídeos/análise , Sialiltransferases/química , Animais , Bovinos , Clostridium perfringens/enzimologia , Corantes Fluorescentes/química , Glicosilação , Humanos , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo
20.
Glycobiology ; 29(10): 735-747, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31281932

RESUMO

The development of therapeutic proteins for the treatment of numerous diseases is one of the fastest growing areas of biotechnology. Therapeutic efficacy and serum half-life are particularly important, and these properties rely heavily on the glycosylation state of the protein. Expression systems to produce authentically fully glycosylated therapeutic proteins with appropriate terminal sialic acids are not yet perfected. The in vitro modification of therapeutic proteins by recombinant sialyltransferases offers a promising and elegant strategy to overcome this problem. Thus, the detailed expression and characterization of sialyltransferases for completion of the glycan chains is of great interest to the community. We identified a novel α2,6-sialyltransferase from Helicobacter cetorum and compared it to the human ST6Gal1 and a Photobacterium sp. sialyltransferase using glycoprotein substrates in a 96-well microtiter-plate-based assay. We demonstrated that the recombinant α2,6-sialyltransferase from H. cetorum is an excellent catalyst for modification of N-linked glycans of different therapeutic proteins.


Assuntos
Antígenos CD/genética , Glicoproteínas/genética , Polissacarídeos/genética , Sialiltransferases/genética , Antígenos CD/química , Clonagem Molecular , Glicoproteínas/química , Glicosilação , Helicobacter/enzimologia , Humanos , Photobacterium/enzimologia , Polissacarídeos/química , Processamento de Proteína Pós-Traducional/genética , Ácidos Siálicos/genética , Sialiltransferases/química , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...